
Machine Learning for Games: Car Parking Agent
Keerthana Nandanavanam

Viterbi School of Engineering
University of Southern California

Los Angeles, CA
nandanav@usc.edu

Krishna Manoj Maddipatla
Viterbi School of Engineering

University of Southern California
Los Angeles, CA
km69564@usc.edu

Nidhi Chaudhary
Viterbi School of Engineering

University of Southern California
Los Angeles, CA
nidhicha@usc.edu

Sumanth Mothkuri
Viterbi School of Engineering

University of Southern California
Los Angeles, CA
mothkuri@usc.edu

Abstract—Machine Learning has been actively used these days
to make our lives easier. One such application lies in self-driving
cars. But these cars have to be equipped with a robust parking
system to identify the parking spot and seamlessly navigate to it
overcoming the obstacles bestowed in its path. The purpose of this
paper is to summarize the research we have done to mirror this
use case. We will explore Proximal Policy Optimization algorithm,
which is a powerful reinforcement learning algorithm as well as
Imitation Learning to make our car agent park correctly at the
highlighted spot and compare the results. We used an open-source
game in Unity as our simulation environment.

Index Terms—Machine Learning, Reinforcement Learning,
Unity, Proximal Policy Optimization, Imitation Learning, Gen-
erative Adversarial Imitation Learning

I. INTRODUCTION

The history of self-driving cars goes back to the early
1920s when experiments were started to turn the fantasy of
autonomous driving into reality. The introduction of DARPA’s
grand challenge in 2004 caused a tremendous uprising in this
technology.Self-driving/autonomous cars are a big sensation in
recent times[1]. Tesla, Waymo, BMW and many other mega-
corporations are now actively investing in this trend. Out of the
many design considerations for such an autonomous vehicle,
having a good parking system that helps in navigating through
obstacles, identifying the right spot, and parking the vehicle
is of paramount importance.

We drew inspiration from this exact problem and strived to
develop a machine learning agent capable of doing the same
using reinforcement learning. The fact that this technology
can also be used for vacuum cleaners that can navigate
through household items and clean the surface thoroughly
has strengthened our motivation to work towards this project.
Generally, it could be used for any obstacle avoidance and
navigation system and hence it can have multiple applications
from medicine to the defense industry.

II. RELATED WORKS

A. Obstacle Avoidance and Navigation Systems

There has been significant research in the field of obsta-
cle avoidance and navigation systems using reinforcement
learning[2] and since this problem is the parent problem of
our use case, we decided to experiment further on the research
done in this domain. The proximal Policy Optimization (PPO)
algorithm was found to be showing great results for the
problem. So, we also drew inspiration from it and incorporated
PPO as our base algorithm.

B. Parking occupancy detection using CNN

The paper[3] describes parking occupancy detection systems
using Convolutional Neural Networks (CNN) and Support
Vector Machines (SVM). The classifier was trained and tested
by the features learned by the deep CNN from public datasets
(PKLot) having different illuminance and weather conditions.

C. Autonomous Vehicle Control using Reinforcement Learning

A lot of promising research has been done using re-
inforcement learning for strategic decision making[4]. The
autonomous exploration of a parking lot is simulated and the
controls of the vehicles are learned via deep reinforcement
learning[5]. A neural network agent is trained to map its
estimated state to acceleration and steering commands to reach
a specific target navigating through the obstacle course. The
training was performed by a proximal policy optimization
method with the policy being defined as a neural network. This
paper also motivated us to look at PPO as our base algorithm.

D. Policy Gradient based Reinforcement Learning

A policy gradient-based reinforcement learning approach
for self-driving cars in a simulated highway environment
has been implemented and tested. The research showed that
reinforcement learning is a strong tool for designing complex
behavior in traffic situations, such as highway driving, where
multiple objectives are present, such as lane-keeping, keeping
right, avoiding incidents while maintaining a target speed[6].



E. Self-Driving Cars Using CNN and Q-Learning

Supervised learning and deep reinforcement learning have
been used for self-driving vehicles regardless of how the hard-
ware is established[7]. Supervised learning with Convolutional
Neural Networks was used for feature extraction while rein-
forcement learning helped the car learn from its experiences.
The training was done in a constrained simulated environment
mimicking some real-life situations such as obstacles and road
signs.

III. ENVIRONMENT

Unity is one of the most popular game development engines
that provides built-in features like physics, 3D rendering,
collision detection without having to reinvent the wheel for
developing a game. One of the main reasons for choosing this
platform is its support for the “mlagents” package. mlagents
package provides implementations (based on PyTorch) of
state-of-the-art algorithms to enable game developers to easily
train intelligent agents for 2D, 3D and VR/AR games[8].
Another important reason is that Unity is a cross-platform
engine meaning it can be used on a machine with any operating
system (OS) like Microsoft Windows, Linux OS, and Mac OS.

Picking the right game is of utmost importance. The game
should be as close as possible to the real-world scenario
of parking a vehicle. Many factors have been taken into
consideration before choosing the game like its complexity,
hardware requirements of the machine where the agent is
trained, installation requirements, and the features that make
the game closer to the real-world setup. After looking at
numerous options, the open-source Car Parking game [9]
designed in the Unity environment was selected.

A. Game Description

The game has 2 levels. Level 1 consists of a bounded arena
with a car starting at an arbitrary position and a parking spot
appearing at another random position. The goal location or
parking spot is highlighted in red color. The car has to first
identify that highlighted spot and then navigate towards it
through three obstacles that are placed in the center of the
arena.

Level 2 of the game also consists of a bounded arena similar
to level 1 but with moving obstacles and floors. The car will
start at an arbitrary position and a parking spot will appear
either on the same floor or a path will be highlighted to another
floor. The car has to identify the respective highlighted parking
spot or floor entrance (which is called portal) and navigate
through moving obstacles in the arena to reach the parking
spot.

Out of the rich set of algorithms provided by mlagents
package, two algorithms, Proximal Policy Optimization and
Imitation Learning using Generative Adversarial Imitation
Learning (GAIL) were used in training the agent for our
selected game.

B. Game Modifications

On top of the open-source game, a few modifications have
been made before creating an agent. Firstly, a scoreboard
has been added that displays the parking score, obstacle hit
score, wall hit score, and the cumulative reward. The parking
score represents the number of times the agent parks the car
in the designated spot. Obstacle hit score and wall hit score
denote the number of times the agent hits the obstacles and
walls respectively and the cumulative reward represents the
total reward accumulated for each episode of the game. These
statistics are important as they help in keeping track of the
performance of the agent during inference.

Second, the boundaries and walls of the arena have been
converted to collision objects along with the obstacles placed
on the arena. When an agent tries to park the car and collides
with any of the collision objects, then a negative reward is
assigned to the agent and the episode ends. After an episode
ends, the agent starts again at the previous start location and
is asked to park the car at the previously highlighted parking
spot.

Third, the game was initially developed as a touch screen
game. There were controls present on the screen and the user
is expected to press the controls for changing the direction
of the car. This behavior has been modified to use keyboard
controls for navigation as it is easier to train an agent with
keyboard controls rather than touch screen controls. The right
arrow or “d” button on the keyboard is used to change the
direction to the right and the left arrow or “a” button is used
to change the direction to left. In level 2 of the game, more
controls for driving the agent have been added. The forward
arrow or “w” button is used to accelerate the agent and when
this key is released, the agent stops navigating in the forward
direction. Along with changing the direction, the agent can
also accelerate or stop and stay in the current location in level
2 of the game.

Finally, the start location of the car has been changed to
a single fixed location for level 1 and level 2. The game
was designed in such a way that the car can start in any
random location and is expected to park in a predefined set
of parking locations. Randomly starting at any location on
the arena increases the training time exponentially and hence
it was decided to stick to only one start location for both
levels. As referenced in Table. I, there are some predefined
goal locations where the agent is expected to park the vehicle
during training. For each episode, a goal location is randomly
selected from the predefined set of goal locations. Level 1 has
3 predefined goals for training. For level 2, when trained for
only one floor, 2 goal locations were used and when trained
for two floors, only 1 goal location was used for the agent
to park. The higher the number of goal locations, the more
is the training time for training the agent. Since level 2 is
tremendously complex in terms of environment and moving
obstacles, it was trained for fewer goal locations.



TABLE I
APPROXIMATE TRAINING TIME TO LEARN PARKING POLICY BASED ON

ENVIRONMENTS USING PPO AND GAIL

Environment Training time to learn correct
policy to park

Level 1 (one storey, fixed obstacles,
3 goals)

12 hours (5M steps)

Level 2 (one storey, moving obsta-
cles, 2 goals)

24 hours (10M steps)

Level 2 (two storeys, moving ob-
stacles, 1 goal)

6 days (50M steps)

IV. PROPOSED METHODS

In this section, the machine learning algorithms used to train
the agent to overcome obstacles and park at the highlighted
spot have been put forward. To improve the inferences made
by the agent, state-of-the-art methods were introduced where
the agent mimics human behavior and tries to learn the
best policy through imitation learning. We further discuss the
reward systems that worked best for each of the algorithms
used for training.

A. Reinforcement learning

Neural Networks have shown a great potential for decision-
making in game-playing agents. However, a simple Neural
Network is a supervised ML. It takes an input that is prop-
agated through the layers of the network and produces an
output, which is then compared with the actual label and the
errors are back-propagated till the network converges. Now,
in supervised learning, it’s difficult to get the training data.
A human player will have to play for multiple hours and
data frames will have to be generated from the games played
to be fed to the system. Since this is a very tedious, time-
consuming, and error-prone task, we decided to move ahead
with reinforcement learning.

Reinforcement learning[10] is the training of machine learn-
ing models to make a sequence of decisions. The agent
learns to achieve a goal in an uncertain, potentially complex
environment. In reinforcement learning, artificial intelligence
faces a game-like situation. The computer employs trial and
error to come up with a solution to the problem. To get
the machine to do what the programmer wants, the artificial
intelligence gets either rewards or penalties for the actions it
performs and tries to maximize the total reward[11]. Typically,
the RL agent takes an action at following a policy π based on
the observation of the state st and reward rt at time t. Since
the action at is applied in the environment by the agent, the
new state changes to st+1 and a reward rt+1 is assigned to the
agent.

One such class of reinforcement learning is Proximal Policy
Optimization which learns online unlike experience replay
by Deep Q-Networks. It strikes a balance between ease of
implementation, sample complexity, and ease of tuning, trying
to compute an update at each step that minimizes the cost
function while ensuring the deviation from the previous policy

Fig. 1. Reinforcement Learning

is relatively small[12]. PPO tries to minimize the following
objective function:

B. Imitation Learning

Given a set of demonstrations or a demonstrator, the goal
of imitation learning (IL) is to train a policy to mimic the
demonstrations. Imitation Learning is usually the preferred
algorithm when it is easy for an expert or a human to
demonstrate the desired behavior expected from the agent
rather than having the agent learn the desired behavior from
a reward function. Instead of having to learn the entire policy
from scratch, Imitation Learning tries to learn the decision
policies based on the expert demonstrations.

The main component of IL is the environment, which is
essentially a Markov Decision Process (MDP)[13]. This means
that the environment has an S set of states, an A set of actions,
a P(s’—s,a) transition model (which is the probability that an
action a in the state s leads to state s’ ) and an unknown R(s,a)
reward function. The agent performs different actions in this
environment based on its π policy. We also have the expert’s
demonstrations (which are also known as trajectories) τ = (s0,
a0, s1, a1, . . . ) , where the actions are based on the expert’s
(“optimal”) π* policy[14].

There are two main approaches to learning a policy by
mimicking an expert behavior: Behavioral cloning and Inverse
reinforcement learning (IRL).

Behavioral cloning is a simple algorithm where it tries to
learn a policy as a supervised learning problem by creating
state-action pairs for a given set of demonstrations. The
drawback for behavioral cloning is that it only tends to succeed
with large amounts of data i.e. it needs a large number of
expert trajectories and it is not efficient due to compounding
error. Inverse reinforcement learning, on the other hand, does
not suffer from this problem. IRL learns the reward function



from the expert trajectories and then derives the optimal policy
from it. However, they are extremely expensive to run[15].

Generative Adversarial Imitation Learning uses the for-
mulation of Generative Adversarial Networks (GANs) i.e.,
a generator-discriminator framework, where a generator is
trained to generate expert-like trajectories while a discrimi-
nator is trained to distinguish between generated and expert
trajectories. GAIL directly learns the policy from the expert
trajectories and not the reward function.

C. Reward System

The main challenge in training an agent using reinforcement
learning is designing a reward system. Reward System is the
key to train an agent properly to learn a good policy. Reward
systems deal with assigning positive and negative rewards for
the actions performed by the agent on the game environment.
Positive rewards encourage the agent to repeat a behavior
and negative rewards curb the behavior. Considering this, it
is important to choose the right actions to give positive and
negative rewards.

For a car parking agent, it is obvious that the agent should
not hit any obstacle while parking. Hence colliding with the
walls, boundaries and obstacles gives the agent a negative
reward. On the contrary, parking the agent at the highlighted
spot gives it a massive positive reward to encourage this
behavior more.

The agent is also incorporated with a distance based re-
warding system. If the agent is moving towards the goal, then
a positive reward is assigned to the agent and if it is moving
away from the goal, then a negative reward is assigned.

The agent also has a proximity based rewarding system.
If the agent is within 2 units of a wall and 2.5 units of an
obstacle, a negative reward is assigned to discourage the agent
from going close to the walls and obstacles.

For level 2 of the game, the agent is also rewarded if
it moves through the portal to a different floor. If the goal
location is on the second floor and the agent navigates through
the portal to the second floor, then a positive reward is assigned
to the agent. If the goal location is on the first floor, but the
agent navigates through the portal to the second floor, then a
negative reward is assigned since the agent is moving away
from the goal.

Two different reward functions have been shaped for level
1 of the game for both the algorithms by trial and error while
training the agents. An extended reward system from level
1 has been designed for level 2 which assigns positive and
negative rewards for navigating through the portal based on
the scenario. Table. II summarizes the rewards and penalties
that were assigned to the agent for every action it takes.

V. RESULTS

The mlagents package saves statistics during the learning
session. These statistics can be viewed on a utility called
tensorboard. The hyperparameters used during the training of
the agent for level 1 and level 2 are mentioned in Table. III.

TABLE II
REWARD SYSTEM

Condition PPO [Level
1]

PPO +
GAIL
[Level 1]

PPO +
GAIL
[Level 2]

Hit the wall
[Episode Ends]

-0.5 -0.5 -0.5

Hit an obstacle
[Episode Ends]

-0.5 -0.5 -0.5

Car Parked
[Episode Ends]

+5 +5 +5

Within 2.5 units
of distance to the
goal location

+0.00008 +0.00003 +0.00003

Best current dis-
tance to the goal
location

+0.00002 +0.00002 +0.00002

Moving towards
the goal but not
the best distance
to the goal in the
current episode

-0.00004 +0.00001 +0.00001

Moving away
from the goal

-0.00008 -0.00002 -0.00002

Within 2 units of
distance to the
wall

-0.005 -0.005 -0.005

Within 2 units of
distance to the
obstacle

N/A -0.005 -0.005

Move through
portal towards
target

N/A N/A +0.5

Move through
portal away from
target

N/A N/A -0.1

TABLE III
HYPERPARAMETER TABLE

PPO [Level
1]

PPO with
GAIL
[Level 1]

PPO with
GAIL
[Level 2]

Batch size 512 256 256
Buffer size 10240 20480 20480
Learning Rate 0.00001 0.00001 0.00001
beta 0.001 0.03 0.03
epsilon 0.3 0.1 0.1
lambd 0.92 0.92 0.92
Hidden Layers 2 2 2
Neurons 64 64 64
Time horizon 128 256 256
GAIL strength N/A 0.7 0.7

A. Statistics Description

1) Cumulative Reward: Mean cumulative episode reward.
In a successful training session, this should increase over time.

2) Policy Loss: Defines how much policy is changing. It
oscillates while training and should be less than 1.

3) Entropy: Defines the randomness of decisions taken.
Ideally, it should decrease during successful training.

4) Value Loss: The mean loss of the value function update
correlates to how well the model is able to predict the value
of each state. At first, it increases since the agent is trying to
learn. Once the reward stabilizes, it decreases[16]



5) Gail Loss: The mean magnitude of the GAIL discrim-
inator loss corresponds to how well the model imitates the
demonstration data[16].

B. Statistics for Level 1

1) PPO:

The observations drawn for the agent trained in level 1 with
PPO are as follows:

Fig. 2. Cumulative Reward with PPO for Level 1

Fig. 3. Policy Loss with PPO for Level 1

Fig. 4. Entropy with PPO for Level 1

• Cumulative Reward: From Fig. 2 it is clear that the
cumulative rewards keep on increasing with the number

of steps. This means that our agent learnt a good policy
and kept on accumulating more positive rewards over
time. The model was run for 5M steps.

• Policy Loss: The policy loss as shown in Fig. 3 fluctuates
throughout the training process, but it is less than 1. It
means that the agent is trying to learn the optimal policy.

• Entropy: Fig. 4 shows that the entropy of the system is
decreasing continuously over steps. Initially the decisions
of the agent are random, but as it learns optimal policy,
the decisions become more informed.

2) PPO with GAIL:

The observations drawn for the agent trained in level 1 with
PPO and GAIL are as follows:

Fig. 5. Cumulative Reward with PPO GAIL for Level 2

Fig. 6. Policy Loss with PPO GAIL for Level 2

Fig. 7. Entropy with PPO GAIL for Level 2

• Cumulative Reward: Similar to the cumulative reward for
the PPO model in Fig. 2, the cumulative reward for the
agent trained using the GAIL model in Fig. 5 is also an
increasing function. The more training steps, the better
will be the policy learnt by the model.

• Policy Loss: The policy loss as shown in Fig. 3 fluctuates
throughout the training process, but it is less than 1. It



Fig. 8. Value Loss with PPO GAIL for Level 2

Fig. 9. Gail Loss with PPO GAIL for Level 2

means that the agent is trying to learn the optimal policy.
Also, the policy loss for GAIL model remained less than
1 throughout the training process as shown in the Fig. 6.

• Entropy: The entropy is a decreasing function Fig. 7
indicating that the agent learned a better policy with
time. It is decreasing continuously over steps. Initially
the decisions of the agent are random, but as it learns
optimal policy, the decisions become more informed.

• Value Loss: Since the agent is trying to learn in the
beginning, it is increasing, then it shows a decreasing
trend as number of steps increase.

• GAIL Loss: This corresponds to mean magnitude of GAIL
discriminator loss.

C. Statistics for Level 2

1) PPO with GAIL:

Level 2 is significantly complex than Level 1 in terms of en-
vironment complexity, reward systems, and hyperparameters,
so more training was required for developing a stable model.
Hence, the agent was trained for 50 million steps for level 2
with 2 floors and moving obstacles. The observations drawn
for the trained agent are mentioned as follows:

• Cumulative Reward: Cumulative reward displays an in-
creasing curve over the number of steps. It begins to
plateau later as the agent learns an optimal policy and
hence gets optimal rewards.

• Policy Loss: Policy loss increases initially but then starts
to steadily decrease as number of steps increase.

• Entropy: There is a gradual decrease in entropy, which
means the model moves from random decision making
to more informed decision making.

• Value Loss: Value loss is decreasing which suggests that
the agent is able to better predict the states as more steps
are passed.

Fig. 10. Cumulative Reward for Level 2

Fig. 11. Policy Loss for Level 2

Fig. 12. Entropy for Level 2

Fig. 13. Value Loss for Level 2

D. Comparison Statistics

Due to significant differences in the environment complex-
ity, reward systems, training time and hyperparameters, it is
not possible to compare Level 1 and Level 2 statistics together.
Level 2 is far superior to the agent trained on Level 1. So,
Level 1 and Level 2 statistics are presented in different sections
as below:



1) Level 1 Statistics:

Table. IV summarizes the results for Level 1 agents trained
using the PPO algorithm and PPO with GAIL when the
parking spots are the same as the training spots. The test has
been run for 150 episodes and the agent trained with PPO and
GAIL is a clear winner having parked 121 times out of 150
and never hitting the wall compared to the 57 times parked
by the PPO agent and 35 wall hits.

PPO with GAIL is also the winner for the second test case
where parking spots are different from the training spots. The
parking score for this agent is 138 with a massive accuracy of
92% when compared to 13% for the agent trained using PPO.
These statistics are summarized in Table. V.

TABLE IV
LEVEL 1 INFERENCE STATISTICS WHEN PARKING SPOTS ARE SAME AS

TRAINING SPOTS

Number
of
Episodes

Parking
Score

Obstacle
Hit
Score

Wall
Hit
Score

PPO 150 57 58 35
PPO with GAIL 150 121 29 0

TABLE V
LEVEL 1 INFERENCE STATISTICS WHEN PARKING SPOTS ARE DIFFERENT

FROM TRAINING SPOTS

Number
of
Episodes

Parking
Score

Obstacle
Hit
Score

Wall
Hit
Score

PPO 150 20 108 22
PPO with GAIL 150 138 12 0

2) Level 2 Statistics:
Table VI represents the performance of PPO with GAIL
algorithm when the parking spot is same as the training spot.
After training the model for 50 million steps, the model
was allowed to make inferences on its own for the same
environment it was trained on. The training accuracy of the
model for level 2 is 32.81%.

Test spots are the spots that the agent is not trained to park
at during the training session. It is important for a model to
generalize on new states of the environment. Hence, two new
parking spots were added, one on floor 1 and another on floor 2
to analyze the performance of the agent. Table VII represents
the performance of PPO with GAIL algorithm on these test
spots. The accuracy of the model when parking on floor 1 is
47.18%, significantly better than an accuracy of 22.81% when
parking on floor 2.

VI. LIMITATIONS, CONCLUSIONS AND FUTURE WORK

The main objective of the project was to develop a car
parking agent that is capable of parking in the highlighted spot
in a parking arena simulated using Unity while avoiding both
static and moving obstacles and hitting the wall. The objective
of tackling fixed obstacles was achieved through two agents

TABLE VI
LEVEL 2 INFERENCE STATISTICS WHEN PARKING SPOTS ARE SAME AS

TRAINING SPOTS FOR LEVEL 2

Number
of
Episodes

Parking
Score

Obstacle
Hit
Score

Wall
Hit
Score

PPO with GAIL 320 105 160 55

TABLE VII
TEST RESULTS WITH PARKING SPOTS DIFFERENT AS TRAINING SPOTS

Number
of
Episodes

Parking
Score

Obstacle
Hit
Score

Wall
Hit
Score

PPO with GAIL
(First Floor)

320 151 169 0

PPO with GAIL
(Second Floor)

320 73 195 52

using a standalone PPO algorithm and combining PPO with
GAIL algorithm.

Out of the two machine learning algorithms, PPO along
with Imitation Learning using the GAIL algorithm performed
better than the PPO model for level 1. The GAIL agent was
able to park in multiple parking spots while the agent trained
using PPO was only able to park in one parking spot. The
inferences made by the GAIL model were much better as the
agent successfully parked the car in random test goal locations
that are different from the training locations.

For level 2, again PPO with GAIL was able to perform well
after tremendous training. It was able to move through portals
to the target and avoid moving obstacles. Even though the
agent hit the obstacles a few times, with more training hours
and different simulation environments, we are hopeful that the
agent will be able to learn a much better policy for parking in
any random spot with any arbitrary start location and in any
environment.

One of the future targets that can be achieved as an
enhancement to the current work is to develop a superior agent
that is agnostic to the environment. Real-world environments
are much more complex and the agent requires state-of-the-art
hardware and research to be successful.

It was further noted that there was a drop in model accuracy
from level 1, so more efforts are needed to pull up the accuracy
of the model for level 2. This can be achieved by training
for more parking spots placed strategically at challenging
positions. Due to limitations of the systems used locally for
training, it was a daunting task as training time will increase
exponentially with more parking spots.

Additionally, apart from PPO and GAIL, numerous other
algorithms can be used for training an autonomous car parking
agent both by the mlagents package in Unity and external re-
sources. We have only scratched the surface of the problem for
training an agent to park in a designated spot and many other
ways can be used to achieve the same result. A performance
analysis into the different techniques to solve this problem
and identifying the best algorithm that can be used to make



inferences can be another future target for this project.
We hope that our efforts in developing an autonomous car

parking system can be used in the real world scenario, thus
solving the problem of obstacle avoidance and navigation.

REFERENCES

[1] Bryan Salesky. A decade after darpa: Our view on the
state of the art in self-driving cars. URL https://medium.
com/self-driven.

[2] Daniel Zhang and Colleen P. Bailey. Obstacle avoid-
ance and navigation utilizing reinforcement learning with
reward shaping, 2020. URL https://arxiv.org/abs/2003.
12863.

[3] Debaditya Acharya, Weilin Yan, and Kourosh Khoshel-
ham. Real-time image-based parking occupancy detec-
tion using deep learning. CEUR-WS, 2087(5):33–40,
2018. doi: http://ceur-ws.org/Vol-2087/paper5.pdf.

[4] David Isele, Akansel Cosgun, Kaushik Subramanian,
and Kikuo Fujimura. Navigating intersections with
autonomous vehicles using deep reinforcement learning.
CoRR, abs/1705.01196, 2017. URL http://arxiv.org/abs/
1705.01196.

[5] Andreas Folkers, Matthias Rick, and Christof Büskens.
Controlling an autonomous vehicle with deep reinforce-
ment learning. CoRR, abs/1909.12153, 2019. URL
http://arxiv.org/abs/1909.12153.

[6] Szilárd Aradi, Tamás Bécsi, and Péter Gáspár. Policy
gradient based reinforcement learning approach for au-
tonomous highway driving. pages 670–675, 08 2018.
doi: 10.1109/CCTA.2018.8511514.

[7] Syed OwaisAli Chishti, Sana Riaz, Muhammad Bi-
lalZaib, and Mohammad Nauman. Self-driving cars using
cnn and q-learning. In 2018 IEEE 21st International
Multi-Topic Conference (INMIC), pages 1–7, 2018. doi:
10.1109/INMIC.2018.8595684.

[8] Unity ml agents package for training game playing agent.
URL https://github.com/Unity-Technologies/ml-agents.

[9] senevsemih. Unity–carparking. URL https://unitylist.
com/p/134h/Unity-Car-Parking.

[10] R. S. Sutton and A. G. Barto. Reinforcement learning:
An introduction. URL https://web.stanford.edu/class/
psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf.

[11] B. Thunyapoo, C. Ratchadakorntham, P. Siricharoen, and
W. Susutti. Self-parking car simulation using reinforce-
ment learning approach for moderate complexity parking
scenario. In 2020 17th International Conference on
Electrical Engineering/Electronics, Computer, Telecom-
munications and Information Technology (ECTI-CON),
pages 576–579, 2020. doi: 10.1109/ECTI-CON49241.
2020.9158298.

[12] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimization
algorithms. CoRR, abs/1707.06347, 2017. URL http:
//arxiv.org/abs/1707.06347.

[13] Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang,
and Tamer Basar. Fully decentralized multi-agent re-

inforcement learning with networked agents. CoRR,
abs/1802.08757, 2018. URL http://arxiv.org/abs/1802.
08757.

[14] Zoltán Lőrincz. A brief overview of imitation
learning. URL https://smartlabai.medium.com/
a-brief-overview-of-imitation-learning-8a8a75c44a9c.

[15] Jonathan Ho and Stefano Ermon. Generative adversarial
imitation learning. CoRR, abs/1606.03476, 2016. URL
http://arxiv.org/abs/1606.03476.

[16] Using tensorboard to observe training. URL
https://github.com/Unity-Technologies/ml-agents/blob/
main/docs/Using-Tensorboard.md.

https://medium.com/self-driven
https://medium.com/self-driven
https://arxiv.org/abs/2003.12863
https://arxiv.org/abs/2003.12863
http://arxiv.org/abs/1705.01196
http://arxiv.org/abs/1705.01196
http://arxiv.org/abs/1909.12153
https://github.com/Unity-Technologies/ml-agents
https://unitylist.com/p/134h/Unity-Car-Parking
https://unitylist.com/p/134h/Unity-Car-Parking
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1802.08757
http://arxiv.org/abs/1802.08757
https://smartlabai.medium.com/a-brief-overview-of-imitation-learning-8a8a75c44a9c
https://smartlabai.medium.com/a-brief-overview-of-imitation-learning-8a8a75c44a9c
http://arxiv.org/abs/1606.03476
https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Using-Tensorboard.md
https://github.com/Unity-Technologies/ml-agents/blob/main/docs/Using-Tensorboard.md

	Introduction
	Related Works
	Obstacle Avoidance and Navigation Systems
	Parking occupancy detection using CNN
	Autonomous Vehicle Control using Reinforcement Learning
	Policy Gradient based Reinforcement Learning
	Self-Driving Cars Using CNN and Q-Learning

	Environment
	Game Description
	Game Modifications

	Proposed Methods
	Reinforcement learning
	Imitation Learning
	Reward System

	Results
	Statistics Description
	Cumulative Reward
	Policy Loss
	Entropy
	Value Loss
	Gail Loss

	Statistics for Level 1
	PPO
	PPO with GAIL

	Statistics for Level 2
	PPO with GAIL

	Comparison Statistics
	Level 1 Statistics
	Level 2 Statistics


	Limitations, Conclusions And Future Work

